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Abstract

Thisarticle presents acomputational model of thelearning of diagnostic knowledge, based
on observations of human operators engaged in a real-world troubl eshooting task. We present
amodé of problem solving and learning inwhich the reasoner introspects about itsown perfor-
mance on the problem-solvingtask, identifieswhat it needsto learn toimproveitsperformance,
formulates learning goals to acquire the required knowledge, and pursues its learning goals
using multiple learning strategies. The model is implemented in a computer system which
provides a case study based on observations of troubleshooting operators and protocol analysis
of the data gathered in the test area of an operationa e ectronics manufacturing plant. The
model not only addressesissuesin human|learning, but, in addition, iscomputationally justified

as auniform, extensible framework for multistrategy learning.



1 Introduction

The focus of our research is on the integration of different kinds of knowledge and reasoning
processesinto real-world systemsthat can learn through experience. In particular, we areinterested
in modeling active, goal-driven learning processes that underlie deliberative learning during the
performanceof complex reasoning tasks. Thisarticlepresentsacase study of multistrategy learning
for the problem of learning diagnostic knowledge during a troubleshooting task. The case study
is based upon observations of human operators engaged in this task. We present a computational
model of problem solving and learning in which the reasoning system performs a diagnostic
problem-solving task, and then introspects about its own performance on the task, identifies what
it needs to learn to improve its performance, formulates learning goals to acquire the required

knowledge, and pursuesits learning goals using multiple learning strategies.

This research was motivated by two considerations. First, although there has been a significant
growth of research on machine learning, much of this research has not been performed in the
context of complex real-world problem-solving tasks (cf. Riddle, 1992). As a result, the issues of
scalability and robustness of these methods, as they are applied to rea-world problems, are still
unresolved in many cases. To promote the applicability and usability of research methods, it is
important to ground theories of reasoning, knowledge representation, and learning in the context

of real-world tasks and domains.

Our second motivation was to provide a computational account of human learning in the
context of areal-world problem. The model presented in this article is based on observations of
troubleshooting operatorsand protocol analysis of the datagathered in thetest area of an operational
electronicsmanufacturing plant. Themode isimplemented in acomputer system, Meta-TS,* which
uses multiple types of knowledge to troubleshoot printed-circuit boards that fail in the test area
of the manufacturing plant. Meta-TS has been evaluated on a series of troubleshooting problems,
including actual problems encountered by the human operators in the manufacturing plant. The
underlying modedl is intended as a computational model of human learning; in addition, it is
computationally justified as a uniform, extensible framework for multistrategy learning in machine

learning systems.



1.1 Theproblem

One of the critical areasin electronicsassembly manufacturing isthe test and repair area (Douglas,
1988; Kakani, 1987). It is estimated that about 20% of manufactured printed-circuit boards
(PCBsg) fail inthetest areain aninitial electronics assembly line, particularly in a medium-to-high
variety product line when it takes time to achieve desired levels of process control. When PCBs
spend a considerable amount of time in the test and repair area, it increases the work-in-process
inventory and slows down the feedback to the manufacturing line necessary for achieving better
process control. This results in significant deterioration of system performance. Computerized
decision aids can potentially alleviate some of the major problemsin the test and repair area and
facilitate enhanced system performance. A key to devel oping computer-based aidsis understanding
the human problem-solving processes that carry out the complex task of troubleshooting in an
assembly line situation. While there has been much interest in developing artificia intelligence
(Al) applicationsin various areas of electronics manufacturing (e.g., Miller & Walker, 1988), most

of thisresearch has not dealt with the issues of learning or cognitive modeling.

Itis generally accepted that learning is central to intelligent reasoning systemsthat performre-
alistic reasoning tasks, such as understanding natural language storiesor solving complex problems
(e.g., Anderson, 1987; Feigenbaum, 1963; Schank, 1983). It isimpossibleto anticipate all possible
situationsin advance and to hand-program amachine with exactly the right knowledge to deal with
all the situations that it might be faced with. Rather, during the performance of any non-trivial
reasoning task, whether by human or by machine, there will aways be failures. An important
aspect of intelligenceliesin the ability to recover from such failuresand, moreimportantly, tolearn

from them so as not to make the same mistake in future situations.

In the Meta-TS system, reasoning failures consist of incorrect troubleshooting diagnoses, no
diagnosis (impasses), and successful diagnoses from inefficient problem-solving.?  When such
failures occur, the system must be able to select and apply an appropriate learning strategy in order
toimprovethe chancesof making acorrect diagnosisinsimilar futuresituations. Thus, oneapproach
areasoning system might take is to reflect over the reasoning that went into making the original
diagnosis and then use this introspective analysis to form a basis for selecting a learning strategy.

To model this process theoretically, we have developed a computational model of introspective



reasoning for decision-making about |earning needs and associated |earning strategies. This model
is instantiated in the context of the diagnostic problem-solving task in the domain of electronics

assembly manufacturing.

1.2 Multistrategy learning

Learning manifestsitself in humanswith multiple strategies over amultitude of learning problems.
Over the past few years, research in machine learning and cognitive science has focused on the
development of independent learning algorithms for many classes of these problems. Some of
the algorithms that are tailored to particular learning problems include inductive learning (e.g.,
induction of decision trees (Quinlan, 1986), conceptua clustering (Fisher, 1987; Michaski &
Stepp, 1983)), analytical learning (e.g., explanation-based learning (DeJong & Mooney, 1986;
Mitchell, Keller, & Kedar-Cabelli, 1986), learning from explanation failures (Hall, 1988; VanL ehn,
Jones, & Chi, 1992)), and analogical learning (e.g., analogy (Falkenhainer, 1989; Gentner, 1989),
case-based learning (e.g., Carbonell, 1986; Hammond, 1989)). Recently, under the banner of
“multistrategy learning,” there has been much interest in combining or otherwise integrating these
and other learning methods in order to address more complex situations than does independent
“monostrategy learning” (see, e.g., Michalski & Tecuci, 1994). Multistrategy learning systems
use a variety of control methods to integrate and combine severa learning strategies into asingle

computer model, providing power and flexibility over a wide range of problems.

An dternative approach to flexible learning is exemplified by cognitive architectures such as
Soar (Laird, Rosenbloom, & Newell, 1986). Soar takesabroad approach to learning, using asingle
learning mechanism (chunking), rather than multiple learning strategies to account for learning on
different classes of problems. Instead of explicit representations of different problem solving and
learning methods and explicit sel ection between them, Soar is based on “weak methods’ (universal
subgoaling and chunking) from which higher-level strategies emerge. The system has been shown
to model explanation-based generalization, strategy learning, macro-operator learning, learning

from advice, and other kinds of learning (Steier et a., 1987).

Regardless of whether itispossible that asingle underlying mechanism might be able to account

for al these methods, however, itisstill important toidentify and study the methodsthemsel ves (and



the conditions under which they are useful), particularly when developing computational models
of human learning in which behaviors corresponding to these learning methods are exhibited.
Rather than assume a uniform mechanism from which the strategies emerge, the multistrategy
approach integrates separate learning strategies into a unified whole by providing a system with
some mechanism for combining the strategies (or for choosing from among them). The desired
learning behavior(s) can then be modeled by manipulating the suite of strategies available to the
learner, by adjusting the manner of combination or the decision mechanism that chooses between
strategies, or by changing the kinds of learning goals available for pursuit. One advantage of this
approach isthat different learning behaviors can be modeled directly and explicitly.

Our methodol ogical stanceisto devel op an explicit theory of the different types of reasoning and
learning that the systemisto perform. Wewish to understand the nature of various!earning methods,
the kinds of situations to which the methods apply, the kinds of knowledge that can be learned
with them, and the limitations each method implies. Our approach uses a set of available learning
strategies that are selected through an introspective analysis of the system’s reasoning processes.
Our method, called introspective multistrategy learning, combines metacognitive reasoning with
multistrategy learning to allow the system to determine what it needsto learn and how that learning

should be performed.

1.3 Introspective multistrategy learning

In order to fully integrate multiple learning algorithms into a single multistrategy system, it is
beneficial to develop methods by which the system can make its own decisions concerning which
learning strategies to use in agiven circumstance. Often, knowledge about applicability conditions
and utility of learning strategiesisimplicitin the proceduresthat implement the strategy; thisfurther
complicates the problem the system faces when automatically choosing alearning algorithm. Our
solution to thisproblemisto represent knowledge of |earning strategies and applicability conditions
for these strategies explicitly in the system itself. An additional methodological benefit of this
approach is that it requires the researcher to formulate such information as an explicit part of the

proposed theory of learning, thus improving the specification of the theory.

In addition to the world model that describes its domain, an introspective multistrategy learning



system has access to meta-models describing its reasoning and learning processes, the knowledge
that this reasoning is based on, the indices used to organize and retrieve this knowledge, and the
conditions under which different reasoning and learning strategies are useful. A meta-model is
also used to represent the system’ s reasoning during a performancetask, the decisionsit took while
performing the reasoning, and the results of the reasoning. All of this knowledge can then be
used to guide multistrategy learning using introspective analysis to support the strategy selection

process.

The introspective process in our model relies on meta-explanations about reasoning. These
are smilar to self-explanations (Chi & VanLehn, 1991; Pirolli & Bielaczyc, 1989; Pirolli &
Recker, in press, VanLehn, Jones, & Chi, 1992), with the difference that self-explanations are
explanations about events and objects in the externa world, whereas our meta-explanations are
explanationsabout eventsand objectsin thereasoning system’ strain of thoughts—the menta world.
While experimental resultsin the metacognition literature suggest that introspective reasoning can
facilitate reasoning and learning (see, e.g., Schneider, 1985; Weinert, 1987; and the further review
of the metacognition literature in section 5.1), it isimportant to develop computational model s that
gpecify the mechanisms by which this facilitation occurs and the kinds of knowledge that these

mechanisms rely on.

Our approach is motivated by computational and system design considerations as well. The
approach relies on a declarative representation of meta-models for reasoning and learning. There
are severa advantages of maintaining such structuresin memory. Because these structures repre-
sent reasoning processes explicitly, the system can directly inspect the reasons underlying a given
processing decision it has taken and evaluate the progress towardsagoa. Thus, these representa
tions can also be used to assign blame, to analyze why reasoning errors occurred, and to facilitate
learning from these errors. Furthermore, these knowledge structures provide a principled basis for
integrating multiple reasoning and learning strategies, and the unified framework makesit possible
to incorporate additional types of learning Situations and additional learning strategies for these

situations.

The key representational entity in our learning theory isameta-explanation pattern (Meta-XP),
which is a causal, introspective explanation structure that explains how and why an agent reasons,
and which helps the system in the learning task (Cox & Ram, 1992; Ram & Cox, 1994). There
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are two broad classes of Meta-XPs. Trace Meta-XPs record a declarative trace of the reasoning
performed by a system, along with causal links that explain the decisions taken. The trace holds
explicitinformation concerning themanner in which knowledge gapsareidentified, thereasonswhy
particular hypotheses are generated, the strategies chosen for verifying candidate hypotheses, and
the basis for choosing particular reasoning methods for each of these. Trace Meta-XPs are smilar
to “reasoning traces’ (Carbonell, 1986; Minton, 1988; Veloso & Carbonell, 1994) or “justification
structures’ (Birnbaum et al., 1990; deKleer et a., 1977; Doyle, 1979), with the difference that
Trace Meta-XPs represent, in addition to the subgoal structure of the problem and justifications
for operator selection decisions, information about the structure of the (possibly multistrategy)
reasoning process that generated a solution. For example, at the highest level of granularity, anode
in a Trace Meta-XP might represent the choice of a reasoning method such as association-based
search or heuristic reasoning, and at a more detailed level a node might represent the process
of selecting and using a particular association or heuristic. These structures could, therefore, be

viewed as representing the “mental operators’ underlying the reasoning process.

The major contribution of our approach, however, isthe use of anew kind of meta-explanation
structureto represent classes of |earning situations along with the types of learning needed in those
gituations. This structure, called an Introspective Meta-XP, aids in the analysis of the reasoning
trace to analyze the system’s reasoning process, and is an essential component of a multistrategy
learning system that can automatically identify and correct its own shortcomings. Thus, instead of
simply representing atrace of the reasoning process, we aso represent the knowledge required to
analyze these traces in order to determine what to learn and how to learn it. Asoutlined in table 1,
the system uses Introspective Meta- X Ps to examine the declarative reasoning chain (recorded in
step 0) in order to both explain the reasoning process and to learn from it after a problem-solving
episode. These structures associate a failure type® (detected in step 1) with learning goals and
the appropriate set of learning strategies for pursuing those goals. Thus, given a specific learning
goal, as opposed to the failure itself, the system can explicitly plan for achieving that goal in it
background knowledge (or even defer the goal pursuit until a later learning opportunity arises),

much like traditiona planners pursue goalsin the world.*

Table 1 should be placed near here.



Therefore, an Introspective Meta-XP performs three functions: in step 2B it aids in blame
assignment (determining which knowledge structures are missing, incorrect or inappropriately
applied); in step 2C it aids in the formulation of appropriate learning goals to pursue; and in
step 2D it aids in the selection of appropriate learning algorithms to recover and learn from the
reasoning error. Such meta-explanations augment a system’s ability to introspectively reason
about its own knowledge, about gaps within this knowledge, and about the reasoning processes
which attempt to fill these gaps. In Meta-TS, the use of explicit Meta-XP structures allows direct
inspection of the need to learn that arises from a problem-solving failure, and of the bases for the

selection of an appropriate learning strategy to address that need.

The remainder of this article is organized as follows. The next two sections present the
technical details of the computational model, including the problem-solving system (section 2) and
the introspective multistrategy learning system (section 3) that constitute the major components
of the model. The article then discusses both a quantitative and a qualitative evaluation of the
model (section 4) and relates the model to research in both artificial intelligence and psychology
(section 5). Thearticleconcludeswith pragmatic implications of the model in education (section 6)

and a summary (section 7).

2 Diagnostic problem-solving

Before presenting the problem-solving component of the Meta-TS system, thissection will describe
the diagnostic problem-solving task addressed by Meta-TS, and the environment from which the
human data was collected that constituted Meta-TS's problem set.

2.1 A real-world problem-solving task

NCR’s manufacturing plant located near Atlanta has state-of-the-art facilitiesin el ectronics assem-
bly manufacturing with anewly installed surface mount technology (SMT) line. Our project began
when the plant became operational in January 1990 (Cohen, 1990). At that time, the plant was
facing typical start-up problems experienced by most new facilities. There were a high number

of printed-circuit boards (PCBs) in the test and repair region waiting to undergo troubleshooting,
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resulting in high work-in-process inventories. Our analysis of the system revealed that developing
amodel of the troubleshooting operator would provide a structure for designing and implementing
computer-based toolsfor thistask. The effort would also facilitate formalization of the task, which
could then be used in the design of instructional systems (Clancey, 1986), thereby facilitating the

development of aflexiblework force that is complementary to the policy of the company.

A schematic of the manufacturing plant is shown in figure 1. An unpopulated board entersthe
SMT line where it is populated with components, soldered, cleaned, and sheared. The populated
board then entersthetest and repair area. A typical PCB manufacturing line has two major test and
repair areas, the “in-circuit test” area and the “functional test” area. PCBs are shipped only after
they pass both the in-circuit test (ICT) area and the functional test area. Our research focuses on

the troubleshooting process when a PCB failsin the ICT area.

Figure 1 should be placed near here.

In the ICT area, the populated printed-circuit board is mounted on an automated | CT machine.
The ICT machine checks individual components as well as connections between components for
proper functioning through severa test procedures. If the PCB passes the tests, an appropriate
message appears on the console of the ICT machine. If the PCB fails any of the tests, the ICT
machine produces a ticket listing the detected failure(s). For example, a component on the PCB
could fail to meet the desired specifications, known as the “nominal” values of the component’s
parameters. The ICT machine may aso provide additional symptomatic information which can be
used by the human operator in the troubleshooting process. The operator then uses the information
in the ticket to troubleshoot the PCB. Troubleshooting isa complex task which can be broken into
two components. diagnosis and repair. Diagnosisis a problem-solving task in which the operator
arrives at a description of cause of the failure and identifies an appropriate set of repair actions to
fix the faulty PCB. Repair involves carrying out the repair actions (in this case, usually a set of

manual actions performed by the operator on the board).

We developed a computational model of an operator involved in the task of troubleshooting
a faulty PCB. The model was based on protocol analysis of over 300 problem-solving episodes
gatheredinthel CT areaof theNCR plant (Cohen, Mitchell, & Govindargj, 1992), and implemented

8



in acomputer system that performed the troubleshooting task. Figure 2 shows part of an example
troubleshooting protocol from Cohen (1990, p. 206). Of the data collected, one set (30%) was
used in the development of the model and the remaining set (70%) was used to perform both
behaviora validation and process validation of the computational model. We found that athough
the problem-solving model was a fair representation of a skilled troubleshooting operator, it had
somelimitations. First, the system assumed that its knowledge was correct and complete during the
reasoning process. Itisdifficult to hand-codeall the knowledgerequiredfor thistask. Furthermore,
evenif thiscould bedone, the system would still befaced with the*brittleness’ problem. Duetothe
dynamics of the system state changes in the el ectronics manufacturing domain, the computational
model must be flexible and robust. For example, one of the pieces of knowledge in the system was
“Resistor r254 is often damaged.” This occured due to a process problem in the manufacturing
plant. If the process problem were fixed, the association would no longer be valid. The system
must have the capability of atering its world model to reflect changes in the real world. In
addition, the problem-solving model did not capture improvement in the problem-solving skills
of the troubleshooting operator. Thus, the model was incomplete as a cognitive model of human

troubleshooting.

Figure 2 should be placed near here.

These considerations motivated our research towards incorporation of a learning model in the
system. The complete problem-solving and learning system is fully implemented in the Meta-TS
program, which has been evaluated using the data gathered at the NCR plant. In this article, we
will focus primarily on the learning aspects of the system; however, to provide context, we first

describe the problem-solving module of Meta-TS.

2.2 Thediagnostic problem-solving module

A schematic of the problem-solving system, the troubleshooting module of Meta-TS, is shown
in figure 3 (Narayanan et a., 1992). The module takes as input the ICT ticket information and

the PCB information. The output of the module is a diagnosis and a set of recommended repair



actions. The problem-solving process uses various types of knowledge, troubleshooting actions,
and control methods, briefly discussed below.

Figure 3 should be placed near here.

The problem-solving module uses various types of knowledge as well as available real-world
troubleshooting actions to hypothesize the cause of a failure and to suggest repair actions for
that failure. Based on the data from the human operators in the NCR plant, we categorized
diagnostic knowledge into two broad types, associations and heuristics. Associations are smple
rules which directly map a particular symptom to a specific diagnosis. The operator may perform
an intermediate action to confirm the hypothesis, but usually does not perform a series of search
sequences. Thistypeof knowledgeiscontext-sensitive andisindexed by board type. Heuristicsare
standard rulesof thumb. These rulesare not context-sensitive and are applicable across board types.
Heuristics are used by the operator for troubleshooting when there is no known association for a
given problem situation. This knowledge determines the series of standard operating procedures
performed in troubleshooting afaulty PCB. Some examples of associative and heuristic knowledge

in the system are shown in table 2.

Table 2 should be placed near here.

In addition to associative and heuristic knowledge, the problem-solving module can also use
troubleshooting actions, which are intermediate subtasks performed by the system to gather the
board information. These correspond to explicit operator actions used in gathering information and
confirming intermediate hypotheses. Finaly, the control methods in the problem-solving module
are procedures that enable the system to look at the symptoms, utilize the appropriate type of
knowledge, invoke proper intermediate actions, and finaly arrive at the diagnosis result. This
result, aso called a “diagnostic,” is a description of the failure aong with the repair action(s)
necessary to fix the faulty PCB. It is also possible that the ICT reading is incorrect (known in the
industry as a “bogus’ reading), in which case the PCB is rerun through the ICT machine. Some

examples of troubleshooting actions, control methods, and repair actions are shown in table 3.
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Table 3 should be placed near here.

The problem-solving module was initially implemented as a separate system, and then later
incorporated into Meta- TS along with the introspective multistrategy learning module. Theimple-
mentation used AT& T 2.1 C++ on a SUN workstation under the UNIX operating system. The ICT
ticket information and the PCB information were represented as C++ classes. Classrepresentations
were also used for associative and heuristic knowledge, control methods, troubleshooting actions,

and repair actions in the system. An example of a problem-solving episode is shown in figure 4.

Figure 4 should be placed near here.

In order to validate the troubleshooting process of the problem-solving module, we added an
explanation facility to keep track of the system’s problem-solving process and produce a trace
of the problem solving at the end of each problem-solving episode. The problem-solving traces
were compared with the verbal protocol data gathered from the human operators at the assembly
plant. (These problem-solving traces also played a central role in the learning module; this will
be discussed in more detail in section 3.) Using the problem-solving traces, the problem-solving
module was validated on 75% of the problem-solving episodes in our datafor amajor category of
board failures. On 84% of these episodes, the model arrived at the same diagnostic result as an
operator did in the real world for the same input information; and on 68% of the episodes, similar
actions were performed in the solution process (Narayanan et a., 1992). This remainder of this
articlefocuses on the learning module; further details of the problem-solving module can be found
in Cohen (1990) and Narayanan et al. (1992).

3 Learning diagnostic knowledge

Although the results from the stand-alone model of troubleshooting showed that the problem-
solving module constituted a reasonably good model of a skilled troubleshooting operator, the

model also contained obvious shortcomings. Electronics manufacturing, like most other real-
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world domains, is a complex and highly dynamic process. A complete model of troubleshooting
in such a domain requires a large amount of knowledge; in addition, the operator’s knowledge
will be inherently incomplete and subject to change as the process being modeled changes. The
problem-solving module, in contrast, was based on the assumption that the available knowledge
was complete and correct; it did not have the flexibility necessary to deal with this task domain
over an extended period of time. Furthermore, the model failed to capture the improvement of
problem-solving skills through experience, an important aspect of human performancein any task

domain.

For thesereasons, wedevel oped alearning modul ethat allowed thesystemto learnincrementally
from each problem-solving episode. This module was based on observations of troubleshooting
operators in the plant, protocol analysis of the problem-solving process, and critical examination
of the computational model of the troubleshooting operator asimplemented in the problem-solving
module. Theoveral system, caled Meta-TS, uses multiplelearning strategies, both supervised and
unsupervised, and a strategy selection mechanism to invoke appropriate strategies in different situ-
ations. Supervised learning occurs in situations in which a novice troubleshooter receives explicit
input from a skilled troubleshooter (the supervisor). In unsupervised learning, a troubleshooter

adapts hisor her domain knowledge based on problem-solving experience without expert input.

Sinceaparticular problem-solving episode may involve several piecesof knowledge (potentially
of different types), the troubleshooter, whether human or machine, must be able to examine the
reasons for successes and failures during problem solving in order to determine what needs to be
learned. For example, if the system fails to arrive at an correct diagnosis, it needs to determine
which piece of knowledge was missing or incorrect. To effectively accomplish this, the system
must be able to examine its own problem-solving processes. Thus, the problem-solving traces
produced by the explanation facility discussed earlier areacrucial component of the computational

model of learning.

Meta-TS uses declarative representations of the knowledge and methods used for problem-
solving in order to facilitate critical self-examination. A trace of the problem-solving processis
constructed during the troubleshooting episode, and introspectively analyzed during the learning
phase to determine what the system might learn from that episode. The analysis also helps the
system select the learning strategy appropriate for that type of learning.

12



3.1 What isto belearned?

Since the problem-solving module relies on associative and heuristic knowledge, the learning
module must, in general, be able to acquire, modify, or delete such associations and heuristics
through experience. In order to be more specific about the constraints on and output of the
learning task, it is necessary to examine the troubleshooting model in more detail. Recent research
in diagnostic problem solving has proposed the use of “deep” reasoning methods (Davis, 1985)
or integration of “deep” and “shalow” reasoning methods in knowledge-based systems (Fink
& Lusth, 1987) and in tutoring systems (Lesgold et al., 1988). Our observations revealed that
operatorsrely predominantly on “shallow” reasoning methods using heuristic and context-sensitive
associative knowledge during problem solving (Cohen, 1990; Cohen, Mitchell, & Govindarg),
1992; Narayanan et a., 1992). This may be due to the fact that the ICT machine filters out most
of the topographic knowledge of the PCB and causal knowledge of the components in the board
through aseries of tests. Maxion (1985) makesasimilar observation about human problem-solving
in the domain of hardware systems diagnosis, noting that “diagnostic judgement is based on gross
chunks of conceptual knowledge as opposed to detailed knowledge of the domain architecture’
[pp. 268-269]. The observation by Barr and Feigenbaum (1981), that humans often solve a problem
by finding a way to think about the problem that facilitates the search for a solution, was clearly
evident in our study. In thistask domain, the search is carried out through “shallow” reasoning
using associations and heuristics; furthermore, the search is sensitive to process changes and can
sometimes make use of a human expert. Thus, the learning strategies implemented in Meta-TS
focus on the supervised and unsupervised acquisition, modification, and deletion of associative
knowledge through the analysis of reasoning traces that, however, do not contain detailed domain

knowledge.

Associative knowledge improves the system performance in two ways. First, it improves
the speed of the problem-solving process. Using associative knowledge typically results in the
reduction of some intermediate stepsin the reasoning process, thus resulting in some savingsin the
time required to troubleshoot; thisis particularly significant if the problem-solving steps involve
real-world actions (such as the lifted leg procedure) which take time to execute. Thisreduction is
important for assembly line tasks which are typically highly time-constrained. Second, associative

knowledge can provide solutions in cases where heuristic knowledge requires information about
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theboard that is not easy to obtain. In general, associative knowledge contributesto the quality and
correctness of the solution for alarge number of the problem-solving situations. This was evident
in our data from the electronics assembly plant, and has also been observed by other researchers
(e.g., Arabian, 1989). Thus, an important type of learning is one in which the operator learns

associations through experience.

Human operators involved in troubleshooting also appear to learn some heuristic knowledge.
We noticed that the training program for novice human operators primarily focuses on manual
skills such as soldering and performing actions such as “ohming out.” However, the problem-
solving process of skilled human operatorsin the plant reveal ed that they often use certain standard
operating procedures or heuristics. The source of this heuristic knowledge appears to be the result
of generalization of associations learned over time while troubleshooting. In addition, asis the
case for associations, heuristics can be learned through both supervised and unsupervised learning
methods. The current implementation of Meta-TS focuses on thelearning of associative knowledge
through experience and does not include strategies for learning heuristics. Moreresearch is needed

to devel op such strategies.

3.2 Theintrospective multistrategy-learning module

Our approach to multistrategy learning is based on the analysis of declarative traces of reasoning
processes to determine what and how to learn (Ram & Cox, 1994). A particular troubleshooting
episode may involve many different associations, heuristics, and troubleshooting actions. If the
final diagnosisisincorrect, the system analyzes its reasoning process, assigns blamefor itsfailure,
and determines what it needs to learn in order to avoid repeating a similar mistake in the future.
If the diagnosis is correct, the system can determine what it might learn in order to improve the
process that led up to this diagnosis. Finally, depending on the type of learning that is necessary,
the system must invoke an appropriate learning strategy. Thus, learning isviewed as a deliberative,
planful processin which the system makes explicit decisions about what to learn and how to learn
it (Hunter, 1990b; Quilici, in press; Ram, 1991; Ram & Hunter, 1992; Ram & Leake, in press,
Redmond, 1992). In our introspective multistrategy learning framework, these decisions are based

through introspective analysis of the system’s performance, which relies on metaknowledge about
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the reasoning performed by the system during the performancetask, about the system’s knowledge,
and about the organization of this knowledge (Ram & Cox, 1994; Ram, Cox, & Narayanan, in

press).

The submodules and the control flow in the introspective multistrategy learning module are
shown in figure 5 aong with the sources of information used by the submodules. The problem-
solving modul e has a declarative representation of the associative knowledge used in troubleshoot-
ing. Thelearning module can add, delete, or modify associative knowledgein the problem-solving
module. It also has a set of verification actions and a set of declaratively represented learning

strategies.

During a troubleshooting episode, atrace of the reasoning performed by the system along with
causal links that explain the intermediate decisions taken is recorded in an instance of a Trace
Meta-XP by the system’s explanation facility. The explainer uses input from the problem-solving
modulein theform of actionstaken, knowledge used to makedecisions, and the diagnosi s outcome.
It also uses the ICT ticket reading and its representation of the PCB from the world model. From

thisinput it reconstructs the reasoning trace and passes it to the introspector.

Figure 5 should be placed near here.

After every problem-solving episode, the introspector examines the reasoning trace and uses
information gathered from tests on the world to determineif the system can learn something from
this experience. Learning occurs when the system fails to make the correct diagnosis (due to
missing or incorrect knowledge) or when the system ascertains that the problem-solving process
can be made more efficient. The tests also help to generate and verify hypotheses that explain
why the reasoning which produced the diagnosis failed, and play a role similar to the real-world
actions performed by experimentation systems (e.g., Carbonell & Gil, 1990; Rgamoney, 1989).
Specifically, in addition to accessing ICT information and PCB information which is provided as
input to the system, the system uses troubl eshooting actions to gather additional information about
the PCB and verification actions to obtain statistical information and to gather information from an

expert troubleshooter.
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Finally, based on what needs to be learned, an appropriate learning strategy istriggered, which
resultsin the modification of existing knowledge in the problem-solving system. Thelearning mod-
ule contains a set of learning strategies represented along with information for strategy selection.
InMeta-TS, theintrospector isimplemented as a C++ class with methodsfor each learning strategy
(see figure 6); this class encodes the knowledge that corresponds to the Introspective Meta-XPs
discussed earlier. The learning strategies currently implemented in Meta-TS are discussed in the

next section.

Figure 6 should be placed near here.

3.3 Learning strategies

Meta-TS has several strategies for |earning associative knowledge for the troubleshooting task, in-
cluding unsupervised knowledge compilation, supervised learning from an expert, postponement of
learning goal's, and forgetting invalid associations. Each strategy requires usto make several design

decisions; these are discussed below. All the strategies discussed below are fully implemented.

3.3.1 Unsupervised learning

Thefirst strategy isthat of unsupervised, incremental inductive learning, which creates an associa-
tion when the problem-solvingmodulearrivesat acorrect diagnosisusing heuristicknowledge. The
introspector compiles the heuristic knowledge into an association using a learning method similar
to knowledge compilation (Anderson, 1989). The motivation for this type of learning is perfor-
mance gain through reduction of the number of intermediate steps when the system encounters a
similar problem in the future, although use of this strategy also reinforces correct problem-solving

sequences.

Anexampleof theunsupervised learning of associationsthrough experienceisshowninfigure?.
In this example, the ICT ticket reading indicated that the resistor component r22 had failed with a
measured reading of 16 ohms. The nominal reading of thiscomponent, from the PCB specification,
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is 20 ohms. The problem-solving module reads the symptom (step 1 in the figure). It first tries
to find an association that directly maps the observed symptoms into a diagnosis, but fails to find
one (step 2). It then finds (step 3) and invokes (step 4) a heuristic that recommends performing the
troubleshooting action “ohming out” on r22. The action isperformedin step 5, but it finds that r22
isnot faulty. Finally, the system outputs the diagnosis that the ICT ticket reading was “ bogus.”

These steps are stored in a Trace Meta-XP, which is analyzed after the troubleshooting is
complete. In thisexample, the introspector performs additional tests on the PCB to determine that
thediagnosisiscorrect. Sincethisisan experienceinwhichacorrect diagnosiswasreached through
the use of heuristic knowledgein asituation for which no association existed, an Introspective M eta-
XP recommends that a new association be learned: “If the ICT ticket indicates that r22 has failed,
and the measured reading is dightly lower than the nominal value, then output the diagnosis that
theICT ticketis“bogus” Thisassociation isinstalled in the system and is used for future problem
solving; it may also be deleted later if it is incorrect or becomes obsolete (e.g., if the problem is
fixed).

Figure 7 should be placed near here.

Several design decisions were made in our implementation of this learning strategy:

e What isthe right time to activate the strategy? Unsupervised learning takes place at the end
of a troubleshooting episode. This strategy is activated when Meta-TS arrives at the right

solution using heuristic knowledge alone.

e When is it useful to form an association? Meta-TS uses statistical information about the
episode (e.g., the number of steps involved in problem solving) and determines if there
will be performance gain through the reduction in the number of intermediate steps while
troubleshooting asimilar board. Thisinformationisonly used to determinewhether learning
anew association would speed up the troubleshooting process, and does not ensure that the

learned association is“correct.”

e What is the right association to learn? Consider the situation when the ICT input is |, the

intermediate steps are 1, 2, 3, 4, and 5, and the diagnostic result is O. Meta-TS would form
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an association either between | and O, or between |, the final step (step 5 in this example),
and O. Domain knowledge is used to decide between the two aternatives. Our data shows
that human operatorstypically form an association between the input and output without any
intermediate stepswhen thediagnostic resultis*Bogus| CT ticket reading.” In contrast, when
the operator decides to replace a defective part, he or she is conservative and performs either
avisual inspection or some other intermediate action to confirm the hypothesis. Meta-TS

behavesin a similar manner.

Discussion: We observed that human operators used yellow tags (“Postlt notes’) to note down
a recurring problem, especially when they believe that this information will be useful in the
future. This happened when they performed several intermediate steps during troubleshooting, and
typically after they had arrived at the diagnostic result. This was the motivation for including this

learning strategy, and also the basis for the first two design decisions.

3.3.2 Supervised learning

The second learning strategy creates a new association through supervisory input. This strategy is
triggered when the system arrives at an incorrect solution using heuristic and/or associative knowl-
edge. The system attemptsto acquire a correct associative knowledge from a skilled troubl eshooter
(the®supervisor”). Thismechanismissimilar to theinteractivetransfer of expertisein TEIRESIAS
(Davis, 1979). However, the knowledge learned in our system is not in the form of production

rules, but in the form of frames and S ots for association records.

An example of the supervised learning of associations through experienceisshownin figure 8.
In this example, the ICT ticket reading indicates that the resistor component r24 has failed, the
measured reading of 21.2 ohms being much higher than the nominal value of 10 ohms. There are
no known associations for this problem, so the system appliesa heuristic that recommends* ohming
out” on r24. In this example, “ohming out” confirms that the ticket reading was correct. Another
heuristic recommends asimple visual inspection of the PCB, which showsthat r24 is missing from
this PCB. Thisisoutput as the diagnosis from the problem-solving module. The introspector inthe
learning modul efindsthat the diagnosisisnot correct; in thiscase, thereisamissing | C component,

u37, that isresponsible for the problematic ICT ticket reading. The expert supervisor suggests that

18



a new association be formed that, for this input, recommends performing a visual inspection on

u37. Thisassociation islearned and installed for future use.

Figure 8 should be placed near here.

Several design decisions were made in our implementation of this learning strategy:

e What isthe right time to activate the learning strategy? This strategy is activated at the end
of the troubleshooting episode when the system arrives at an incorrect solution or is unable

to make any inference based on the information availableto it.

e What is the structure of the supervisory input? The structure of the desired supervisory
input is determined by the manner in which the associative knowledge is stored in the
system. In contrast, the conversation between an expert and novice troubleshooter is not
so structured.  Since the relevant information transmitted between them is domain- and
task-oriented, however, that structure is exploited in the dialogs used by Meta-TS. While
the current implementation of this learning strategy does not model the full richness of
a troubleshooter’s interactions with an expert, the more structured interaction allows an
objective evaluation of the model. The user interaction in the current implementation of the
system is very simple since that was not the focus of our research; however, it would be

relatively easy to include a more sophisticated dialog system if desired.

¢ How can the system reason about the validity of the expert input? Thisis an open question
for learning systems in general. However, for our purposes, the input from the expert
troubleshooter can be assumed to be correct. Meta-TS does not critically examine whether
the input given by the expert is correct; it directly takes the associative knowledge input by
the expert and adds it to its knowledge base.

Discussion: Novice operators ask expert troubleshooters such as engineers or highly trained
technicians when they have problems in their task. We use the expert-novice metaphor for the
supervisor-system interaction. The system learns the knowledge input by the supervisor (as do

novice troubleshooters). The interaction between Meta-TS and the expert is capable of gathering
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the relevant associative knowledge. However, the actual mode of communication does not reflect
expert-novice interaction in the real world. For example, Meta-TS currently does not model
apprenticeship relationshipsin troubleshooting (e.g., Redmond, 1992).

The improvement in system performance from this learning strategy depends on the quality
and validity of the expert input. The new knowledge is subject to change, depending on the future
episodes encountered by the system. If the new knowledge obtained from supervisory input is
found to be reliable in a number of future instances, the confidence in the gained knowledge is
increased. However, if the new knowledge isincorrect, it is deleted over time (see section 3.3.4).
Thus, the transfer of knowledge isimmediate but the  sustainability” of the knowledge depends on
the use of the gained knowledge.

3.3.3 Postponement

A thirdlearning strategy isthat of postponement (Hammond et al., 1993; Ram, 1991). Thisstrategy
is triggered when the system is unable to get immediate input from a skilled troubleshooter. The
system posts a learning goa (Ram, 1991; Ram & Hunter, 1992; Ram & Leake, in press), keeps
track of the reasoning trace for the particular problem-solving episode, and asks questions at a
later time to gather appropriate associative knowledge. Postponement takes place when thereis no
supervisory input at the end of a troubleshooting episode. The learning goa and the trace of the
troubleshooting episode are stored in the introspector. Suspended learning goals can be satisfied
both through supervised or unsupervised methods at alater time.

At the beginning of a new troubleshooting episode, the introspector checks whether the reason-
ing trace associated with any suspended learning goal is based on an input problem that is similar
to the current problem. Similarity is determined based on the fault typeindicated on the ICT ticket
and the difference between the nominal and measured readings. If one or more matching learning
goals are found and an expert is available, the introspector triggers a question-and-answer session
by presenting theinformation it has on the past episodes. Details of the episodes are presented only
if thesupervisor desirestolook at it. If expert input isobtained, new associ ative knowledgeisadded
to the system and the resolved learning goal s are del eted al ong with the associated reasoning traces.

The system then continues to solve the current problem using the new associative knowledge.
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If no expert input is available, the introspector triesto solve the current problem. If it succeeds,
the learning goal s that matched this problem are automatically satisfied without supervisory input.
As before, these goal's and associated reasoning traces are del eted since the system is now capable
of solving those problems. The system is also capable of solving similar problems in the future

with the newly formed associative knowledge.

Again, several design decisions were made in our implementation of this learning strategy:

e What isthe appropriatetime for question-answer sessions? A question-answer session takes
place either at the end of a troubleshooting episode or at the beginning of a new episode.
Question-answer sessions are not needed for learning goals that become redundant when
new associative knowledge is learned without user input. There are, of course, several other
factorsinvolved in deciding when to ask a question, including sociological factors such as
the personalities of and interpersonal interactions between the troubleshooter and the expert

technician; these are outside the focus of our mode!.

¢ How should the suspended question be presented? Meta-TS uses context-sensitive presenta-
tion of information. When the user is asked for input in a sSituation which matches a similar
situation that is associated with alearning goa suspended from a prior episode, the informa-
tion in the reasoning traces leading to that learning goal is presented to provide a context for
the dialog. Using the principle of progressive disclosure, the user can ask to examine more
details.

e When are learning goals active? Learning goals are always “active’ in the sense that any
problem-solving episode or question-answer session could contain the information sought
by aprior learning goa; however, learning goals are not actively pursued by the system until
the desired information is available in the available input, a which time the algorithm that

carries out the learning is executed.

Discussion: Novice operators seek input from the expert supervisor when they are unable to find
the solution to aproblem. Operators may ask for input when asimilar new problem is encountered.
Undiagnosed PCBs may also be stored and retrieved later for re-analysis, which corresponds to

the deferment of a learning goal until a later opportunity to get the appropriate information is
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encountered. The design decision to present prior reasoning traces to the expert is intended to
facilitate user interaction; although operators can often recall what they did in earlier situations,
it is arguable whether they remember all the details of the entire troubleshooting process for the

earlier situations.

3.34 Forgetting

Two additional learning strategies delete associative knowledge when it isno longer valid. These
strategies are primarily targeted at the brittleness problem that is encountered when the manufac-
turing process is changed and existing associations are rendered obsolete. The first strategy uses
expert input to delete associations, and is invoked at the end of every problem-solving episode.
The system queries the supervisor to determine whether any associations used in the reasoning
trace of that episode should be deleted. If the supervisor has knowledge about, for example, a
process change and the system dynamics has resulted in an association becoming obsolete, that
information can be input to Meta-TS. This strategy works quite well in general, although it is, of

course, dependent on the availability and quality of user input.

The second deletion strategy is unsupervised and does not require user input. This strategy
is selected when Meta-TS arrives at an incorrect solution (as determined through additional tests
on the PCB or through expert input) and the reasoning trace shows that a single association
was used in arriving a the solution. Since heuristic knowledge in this task domain tends to
be relatively stable, an incorrect diagnosis involving several heuristics and a single association is
blamed on the association. Theintrospector tracks down thisassociation and deletesit. The current
implementation of this strategy cannot deal with situations in which more than one association is

used; such situations require assigning blame to the particular association that was at fault.

Several design decisions were made in our implementation of this learning strategy:

e Under what conditions should an association be deleted? When the expert troubleshooter
indicates that an association needs to be deleted, Meta-TS follows the supervisory input. In
the unsupervised mechanism, the system behaves conservatively in the sense that a piece
of associative knowledge is deleted only if the diagnostic result is incorrect and only one

association was involved in the problem-solving process. In the current implementation, a
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user-definable parameter determines how many times an association needsto be responsible
for an incorrect diagnosis beforeiit is deleted; while not a general solution to the problem of
determining when a piece of knowledgeis no longer valid, this method is reasonable in our
task domain given the highly dynamic nature of the manufacturing process. Empirical studies
showed good performance with this parameter set to 1; hence, in the evaluations presented
in section 4, the system was configured to delete an association if it led to a single incorrect
diagnosis, but a different setting could be chosen if desired. Another learning strategy (not
currently implemented) would be to make the association more specific so as to exclude the

current situation.

e What isthe right time to activate the strategies? Deletion of existing associative knowledge
in Meta- TS takes place at the end of atroubleshooting episode. At this point, the system has
avallableto it thetrace of its reasoning process and also information about the correctness of

itsdiagnostic result. Both arerequired in order to identify and delete incorrect knowledge.

Discussion: When the manufacturing processchanges, it impactsthe quality of theboardsproduced,
the types of malfunctions that can occur, and consequently the operator troubleshooting. For
example, let us assume that r243 is aknown defective part, say, due to a poor quality vendor. When
the vendor is changed, the part r243 may no longer be defective. Typically, this information is
communicated from the manufacturing process line or when the operator recognizes the change
in the situation due to a failure of the troubleshooting process. The first situation corresponds
to the supervisory input case, and the second to the unsupervised case. It is arguable whether
human operators can “forget” an association instantaneoudy; however, trained operators often stop
using an obsolete association even if they do not actually “forget” it. The cognitive plausibility of
various forgetting mechanisms is still an open research issue, although the methods implemented

in Meta-TS are effectivein dealing with the particular task at hand.

4 Evaluation

Meta-TS has been evaluated both qualitatively and quantitatively. We were interested both in

comparing the results to the human data, as well as evaluating it as a machine learning system.
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We evaluated the system using 42 actual problem-solving episodes gathered at the plant over a

2-month period (Cohen, 1990). The problems dealt with various types of resistor failures and

are representative of the types of problems encountered over the 2-month period. To evauate the

learning methods, we tested the following five conditions on the 42 test problems.

H (hand-coded): The original non-learning system with hand-coded associations. This
condition represents a troubleshooting system that has been hand-designed by an expert
researcher, and is useful as a benchmark in determining the strengths and limitations of the

learning strategies.

NL (no learning): The system with all associations removed and learning turned off. This
condition represents a base case against which to evaluate the efficacy of the learning strate-

gies; it uses only heuristic knowledge.

L (learning): The system with all associations removed and learning turned on. Thisisthe

basic Meta-TS system with no prior experience.

L42: The system with all associations removed, then trained it on the 42 test problemswith
learning turned on. The system wasthen evaluated by re-running it on the same 42 problems.
This condition was intended to validate the learning strategies in Meta-TS by ensuring that
they learned the knowledge required to solve the problems.

L20: The system with all associations removed, then trained on 20 randomly generated
training problems with learning turned on. The problems can be classified as easy, medium,
and hard, based on degree of difficulty as measured using the number of intermediate steps
in the troubleshooting process. We generated 20 random problems with the probabilities
that the problem generated was easy, medium or hard set to 0.6, 0.2 and 0.2, respectively.
The randomly generated training set is representative of the problems a human operator
encounters over about a month at the job, both in terms of number and degree of difficulty.
The problems varied from 42 test problems in various ways. In order to test the statistical
significance of the results, several independent random training problems were generated.
“L20" in the following discussion and in figures 8 through 12 indicates the mean L20 value

at various data points.
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Each of these conditions were evaluated quantitatively for speed and accuracy on the 42 test
problems, and also qualitatively by examining the content of the learned knowledge and details of
the solution process. For supervised learning strategies, we provided “expert” input to the system

based on what was appropriate to the input problem and domain experience.

4.1 Quantitative evaluation

Two quantitative performance measures were used: the accuracy of the diagnostic result, and the
speed (measured by the number of intermediate problem-solving steps) of arriving at the diagnosis.
Figures 9 through 13 illustrate the system performance over the 42 problemsfor theH, NL, L, L42

and L20 conditions.

Diagnostic accuracy: Figure 9 shows the cumulative accuracy of the system for the various
conditions. The H condition arrived at the correct diagnosis in 86% of the 42 problems. The
L42 condition arrived at the correct diagnosisin 81% of the problems. The values for the L20, L,
and NL conditions were 76.8%, 76%, and 71% respectively. The graphsillustrate both these find

accuracy figures, aswell as the improvement of the system with experience.

Figure 9 should be placed near here.

Figures 10 and 11 compare the accuracy of the learning conditions relative to that of the hand-
coded condition and non-learning conditions, relatively. By measuring the ratio, we compensate
for differences in the intrinsic difficulty of the individual problems. Again, the graphs illustrate
both the final result as well asimprovement with experience. The ratio of the L42 condition to that
of the H conditionisabout 0.94; for L20 and L conditions, theratios are 0.9 and 0.89, respectively.
As compared with the NL condition, the L42 condition is about 1.14 times more accurate; for L20

and L, theratios are 1.08 and 1.07, respectively.

A t-test was performed to test the null hypothesis that the NL performance was equa to the
mean L20 performance. During this analysis, 5 independent random L20 sets were used; their

mean was tested against a constant, which is the value of NL. Using the operating characteristics
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curve, we determined that for the variance observed in the data, the sample size of 5 was sufficient
to keep the type Il error () within 0.10. The t-test showed that the difference between NL and
L20 is statistically significant. At the end of 42 episodes, t(4) = 3.04, p < 0.05 for the null
hypothesis L20 = NL. With only 35 episodes, the statistical advantage of L20 over NL was only
marginally significant after sequential Bonferoni adjustment (¢(4) = 3.33,p = 0.03). Thus, the
learning system showed improvement in performance as compared to the non-learning system, and

thisimprovement was statistically significant after 42 training episodes.

An independent t-test was performed to compare the mean L 20 performanceto the performance
in the H condition. The test showed that the performance of the learning system was poorer than
the performance of the system using hand-coded associations after 15 episodes at atypel error («)
value of 0.05. Thus, the learning in Meta-TS was better than the NL condition, but poorer than the

H condition.

Figure 10 should be placed near here.

Figure 11 should be placed near here.

Speed of problem solving: Figures 12 and 13 compare the speed of the solution process (mea-
sured by the number of intermediate steps) with the various learning conditions relative to the
hand-coded and non-learning condition, respectively. The L20 and L42 conditions consistently
arrive a the diagnostic result faster than the H condition. The L condition takes about 20 problem
episodes to reach the same speed as that of the H condition and then consistently arrives at the
diagnostic result faster than the H condition. At theend of the 42 problem episodes, theratiosof the
learning conditionsto the hand-coded conditionsare: 1.52 (L42toH), 1.24 (L20toH), and 1.06 (L
to H). In comparison to the non-learning version of the program, all the three learning conditions,
L42, L20, and L, consistently arrived at the diagnostic result faster than the NL condition. At the
end of the 42 problem episodes, the ratios of the learning conditions to the hand-coded conditions
are 1.75(L42toH), 1.41 (L20to H), and 1.20 (L to H).
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Figure 12 should be placed near here.

Figure 13 should be placed near here.

Discussion: The results of the quantitative evaluation can be summarized as follows. The
multistrategy learning module in Meta- TS clearly contributes to enhanced system performancein
the troubleshooting task; thisimprovement is statistically significant. In comparison with the non-
learning system with no hand-coded associations, the associative knowledge learned by Meta-TS
increases the accuracy of the diagnostic result and speeds up the problem-solving process. The
performanceof Meta-TSfurther increaseswhen itistrained on similar problemsbeforeitisapplied
to novel problems. The associative knowledge learned by Meta-TS enablesit to arrive at the same
solution as that of the system with the hand-coded associative knowledge between 89% and 94%

of thetime.

Although Meta-TSisfaster than the hand-coded version, it was also seen that Meta-TSwith the
various|earning strategies did not outperform the system with the hand-coded associationsin terms
of the accuracy of diagnostic result. We hypothesize that it may be due to two reasons. First, in
order not to spoon-feed the system and possibly invalidate the results, the supervisory input given
to the system throughout the evaluation process was kept very minimal. Thus, the expert input
to the system for either the 20 or 42 problem-solving episodes may not have enabled Meta- TS to
obtain all the associations that an operator in the plant obtains over a period of several months of
task performance.> Second, the currently implemented system does not contain al the learning
strategies that a human operator uses. However, given the learning architecture used in Meta-TS,

it is possible to incorporate additional learning strategies, once identified, in the system.

4.2 Qualitative evaluation

Wealso evaluated Meta-TSusing variousqualitative metrics. We compared thelearned associations

with the hand-coded associations, the solution process of a human operator to that of Meta-TS on
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the same problems, and the methods and knowledge used by Meta-TS to troubleshoot and learn to

those used by human operators. The results are as follows.

Quality of thelearned associativeknowledge: We compared the associative knowledgelearned
by Meta-TS while troubleshooting the 42 test boards to the hand-coded associations in the original
problem-solving system. Meta-TS learned 33% of the hand-coded associations. It was unable
to learn some of the hand-coded associations as it did not encounter them in the training or test
problem set. (Recall that the hand-coded associations were based on over 300 problem-solving
episodes.) Meta-TS also learned other associations that did not correspond to the hand-coded ones

which enabled it to perform better in terms of the speed of the solution process.

Comparison of the solution process. We compared the process of arriving a a solution in
Meta-TS and operator troubleshooting processes from the verbal protocols. The L20 condition
was used in this comparison as it best represents a fairly trained operator because of the training
input discussed earlier. We divided the problems into two sets. Difficult problemsincluded those
in which Meta-TS was unable to arrive at the correct solution or those which required several
intermediate problem-solving steps; in about 50% of these problems, human operators also spent a
considerabletimein troubleshooting. The remaining problemswere considered easy for Meta-TS;

in about 80% of these, human operators also arrived at the correct solution fairly quickly.

Comparison of troubleshooting knowledge and learning processes. Asdiscussed earlier, hu-
man operators rely predominantly on shallow reasoning methods using heuristic and context-
senditive associative knowledge in this task domain. This is modeled through the use of heuristic
and associ ative knowledge in the troubleshooting model. Furthermore, humans operators learn as-
sociative knowledge through experience in the task by severa means. They may obtain input from
expert troubleshooters. They may also notice recurring instances of a problem and may then form
an association between the input and the diagnostic result. In some situations, when immediate
input from an expert is not available, they may place the PCB with the ICT reading aside and then
attempt to obtain supervisory input at alater timewhen they encounter asimilar problem. All these

means of |earning associative knowledge by human operators are reflected by the various learning
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strategies in Meta- TS, as discussed earlier. The strategies are integrated through the introspective

learning architecture of the system.

4.3 Generality of the model

Inadditionto evaluating Meta-TSitself, we also need to evaluate the generality and flexibility of the
underlying model of introspective multistrategy learning. We are performing another case study in
atask domainthat is very different from the one discussed in thisarticle. The Meta-AQUA system,
presented in Ram and Cox (1994), uses “deep” causal knowledge to understand natural language
stories. The performancetask in this system that of causal and motivational analysis of conceptual
input in order to infer coherence-creating structures that tie the input together. Meta-AQUA is an
introspective multistrategy learning system that improvesitsability to understand stories consisting
of sequences of descriptions of states and actions performed by charactersin the real world. The
system is based on the AQUA system (Ram, 1991, 1993), which is a computational model of an
activereader. Meta- AQUA uses the same theory of introspective multistrategy learningto allow the
system to recover from, and learn from, severa types of reasoning failuresthrough an introspective

analysis of its performance on the story understanding task.

In both AQUA and MetaeAQUA, reading is viewed as an active, goal-driven process in which
the reasoning system focuses attention on what it needsto know and attemptsto learn by pursuing its
goalsto acquire information (Ram, 1991). Such a system models the hypothetical metacognitive
reader discussed by Weinert (1987), who “perceives a gap in his knowledge, ... attempt[s] to
take notes on the relevant information, to understand it,” undertakes “learning activities from
a written text,” examines “how his assessment of his own knowledge structures compares with
his expectations about the demands’ of an uncoming performance task, and can tell us about his
“preferred learning strategies, and hiseval uation of hisown situation and the possi bl e consequences”
[p. 7]. While reasoning in this task domain is very different from the often shallow diagnostic
processes used in assembly line manufacturing, and the two use very different kinds of knowledge,
it is possible to use the same model of introspective multistrategy learning in both task domains
(Ram, Cox, & Narayanan, in press). Although further details of Meta- AQUA are outside the scope

of thisarticle, we introduce the system here as further computational evidence of the generality of
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our approach.

4.4 Limitations of the model

While we have achieved a reasonable degree of success in modeling human troubleshooters as
they learn and gain experience on an assembly line, our model aso has several limitations. Some
of these limitations are due to the level of granularity of the introspective multistrategy learning
theory; thisissue is discussed further towards the end of this section and in section 5.2. Here, we
discuss limitations in our use of the theory as a computational model of human troubleshooting,
including limitations arising from the computational framework used to develop Meta-TS, and

limitations due to the current implementation of the Meta-TS program.

Implementational limitations are, perhaps, the least important. For example, our current
implementation of the method for interactive transfer of expertise during supervised learning is
very smple. We were interested in the integration of multiple learning methods into a single
system and not so much in developing new learning algorithms; if better learning algorithms
were developed, they could be incorporated into Meta TS with relative ease.  Similarly, the
implementation of forgetting smply involves deletion of an association; clearly, human forgetting
is a much more complex process (e.g., Cox, 1994). Other such ssmplifications have been pointed
out in the preceding technical discussion. Itisinterestingto note, however, that Meta-TS can model

many aspects of the human data even with these ssimplifications.

Meta-TS is also limited in certain ways as a computational model of human troubleshooting.
Our model focuses on ICT troubleshooting operators who routinely work on testing and repair,
and does not model technicians or engineers who are, for example, called in to help with this
task on certain occasions, such as when avery difficult problem is encountered. Although expert
technicians and engineers may also rely on associative and heuristic knowledge similar to that
observed in our study, they may also use other kinds of knowledge, such as topographic models or
causal knowledge. For example, Hale (1992) shows that humans use both weak causal heuristics
and domain-specific knowledge in learning symptom-fault associations in causal domains. Senyk,
Patil, and Sonnenberg (1989) argue that in medical diagnosis experienced diagnosticians apply a

variety of reasoning techniques, ranging from the association of symptoms and diseases to causal
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principles about diseases and first-principle analysis grounded in basic science. Based on research
in process control, mai ntenance, and medicine, Rasmussen (1993) outlinestheimportance of causa
knowledge related to the mental model of human operators during problem solving. While the
Meta-TS framework permits extension of the model, the current model does not represent these
kinds of knowledge. Consequently, the model is limited to situations when the shallow reasoning
methods are sufficient and may not be directly useful for situations where “ deeper” knowledge of

thedomain isnecessary (for example, situationswhen the root cause of the problemisto be found).

Another limitation of the current model isthe smplified view of thetroubleshooter’sinteraction
with the environment. This interaction not only includes expert-novice interaction in supervised
learning situations, but a so includesinteraction with the equipment and artifactsin the environment
that the troubleshooter is situated in. In particular, our model focuses on cognitive processing and
not on situated interactions; while the former is important, the relationship between the two is an

important issue for future research.

Finally, while the learning strategies used in Meta-TS are similar to those used by a typical
“trained” operator, and the overal learning behavior of Meta-TS is also comparable with that
of a human operator, our analysis does not provide a detailed comparison with human thought
processes on individual problems. In particular, on a given set of problems, we have neither
shown that an individual human operator formulates the particular reasoning traces that Meta-
TS does, nor that he or she selects the particular learning strategies that Meta- TS does on each
problem in that set. Such a comparison is extremely difficult since the specifics of a reasoning
trace, and the corresponding choice of alearning strategy, depend on the domain knowledge and
level of expertise of the troubleshooter, the prior problems encountered, the availability of an
human expert, and other details. Furthermore, it is unclear how one could obtain protocols of
human troubleshooters that specified their reasoning traces or their strategy selection decisionsin
sufficient detail to permit direct comparison on individual problem-solving episodes at the level of
granularity of the computational model.® Thus, Meta-TS should be viewed as a model of atypical
troubleshooting operator in atypical assembly line environment, and not as a detailed model of a

specific individual operator solving a specific set of problems.
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5 Discussion and related research

Diagnostic problem-solving has been studied by severa researchersin cognitive science, artificia
intelligence, psychology, and human-machine systems engineering. Specifically, there has been
much work on troubleshooting in real-world domains, including that of Bereiter and Miller (1989)
in computer-controlled automotive manufacturing, Govindargj and Su (1988) in marine power
plants, Katz and Anderson (1987) in program debugging, Kuipersand Kassirer (1984) in medicine,
Maxion (1985) in fault-tolerant hardware systems, and Rasmussen (1984) in industrial process
control. Much of thiswork is based on studies of human problem-solving. Rouse and Hunt (1984)
discuss various model s of operator troubleshooting based on experimental studiesin smulated fault
diagnosis tasks and present implications for training and aiding operatorsin these tasks. Research
in artificial intelligence has resulted in computational models of knowledge-based diagnosis (e.g.,
Chandrasekaran, 1988) and qualitative reasoning (e.g., deKleer & Williams, 1987).

A detailed review of research in human troubleshooting and diagnostic problem-solving is
outside the focus of this article, which is concerned with issues in learning and introspection. In
the remainder of this section, we will summarize related issues from the artificial intelligence and

psychology literatures.

5.1 Artificial intelligence, metareasoning and multistrategy learning

There are severa fundamental problems to be solved before we can build intelligent systems
capable of general multistrategy learning, including: determining the cause of a reasoning failure
(blame assignment), deciding what to learn (learning goal formulation), and selecting the best
learning strategies to pursue these learning goals (strategy selection). We claim that a genera
multistrategy learning system that can determine its own learning goals and learn using multiple
learning strategies requires the ability to reflect or introspect about its own reasoning processes
and knowledge. Pollock (1989) distinguishes between knowledge about the facts that one knows
and knowledge about one’s motivations, beliefsand processes. Introspective multistrategy learning
is based on the both kinds of metaknowledge; we argue that introspective access to explicit
representations of knowledge and of reasoning processes is essential in making decisions about

what and how to learn.

32



One form of introspection that has been implemented in many systems is the use of reasoning
traces to represent problem-solving performance; an early example of this approach was Suss-
man’s (1975) HACKER program. Reasoning trace information has primarily been used for blame
assignment (e.g., Birnbaum et al., 1990) and for speedup learning (e.g., Mitchell, Keller, & Kedar-
Cabdlli, 1986). In addition, we propose that such information, suitably augmented with the kinds
of knowledge represented in our Introspective Meta- X P structures, can be used as the basis for the

selection of learning strategies in a multistrategy learning system.

Many research projects in Al have demonstrated the advantages of representing knowledge
about the world in a declarative manner. Similarly, our research shows that declarative knowledge
about reasoning can be beneficial. The approach is novel because it allows strategy selection
systems to reason about themselves and make decisions that would normally be hard-coded into
their programs by the designer, adding considerably to the power of such systems. Meta-reasoning
has been shown to be useful in planning and understanding systems (e.g., Stefik, 1981; Wilensky,
1984). Our research shows that meta-reasoning is useful in multistrategy learning as well. To
realize this ability, our model incorporates algorithms for learning and introspection, as well as

representational methods using which a system can represent and reason about its meta-models.

From the artificia intelligence point of view, our approach is similar to other approaches
based on “reasoning traces’ (e.g., Carbonell, 1986; Minton, 1988) or “justification structures’
(e.g., Birnbaum et al., 1990; deKleer et a., 1977; Doyle, 1979), and to other approaches that use
characterizations of reasoning failures for blame assignment and/or multistrategy learning (e.g.,
Mooney & Ourston, 1991; Park & Wilkins, 1990; Stroulia & Goel, 1992). A magjor difference
between these approaches and oursis our use of explicit representational structures (Introspective
Meta-XPs) to represent classes of learning situations along with the types of learning needed in
those situations, a type of knowledgethat is crucial in multistrategy learning systems. Other types
of knowledge may aso be important in multistrategy learning systems. For example, Pazzani’s
(1991) OCCAM system has generalized knowledge about physical causality that is used to guide
multistrategy learning. In contrast, we propose specific knowledge about classes of learning
situations that can be used to guide learning strategy selection. Integration of these and other

approachesis still an open research issue.

Approaches to multistrategy learning fall into four broad categories, which we call strategy
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selection models, toolbox models, cascade models, and single mechanism models. The common
element in al these approaches is the use of multiple learning methods to allow the reasoning

system to learn in multiple types of learning situations.

In strategy selection models, the reasoning system has accessto severa learning strategies, each
represented asa separate algorithm or method. Learning involvesan explicit decision stageinwhich
the appropriate learning strategy is identified, followed by a strategy application stage in which
the corresponding algorithm is executed. Methods for strategy selection also differ. Pazzani’s
(1991) OCCAM system, for example, tries each learning strategy in a pre-defined order until an
applicable one is found; Reich’s (1993) BRIDGER system uses a task analysis of the problem-
solving task to determine the appropriate learning strategies for each stage of the task; Hunter’s
(1990a) INVESTIGATOR system represents prerequisitesfor application of each learning strategy;
and Ram and Cox’s (1994) MetarAQUA system uses characterizations of reasoning failures to

determine what to learn and, in turn, the learning strategies to use to learn it.

Toolbox models are similar to strategy selection models in that they too incorporate severd
learning strategiesin asingle system. Thedifferenceisthat these strategies are viewed astoolsthat
can beinvoked by the user to perform different typesof learning. Thetoolsthemselvesareavailable
for use by other tools; thus, learning strategies may be organized as coroutines. An example of
thisapproachisMorik’s(1991) MOBAL system, in which learning occurs through the cooperation
of several learning tools with each other and with the user. Another example of the toolbox
class is the PRODIGY system (Carbonell, Knoblock, & Minton, 1991). The system combines
explanation-based learning, case-based (analogical) learning, abstraction, experimentation, static
analysis, and tutoring. However, the system is designed as a research test-bed for analyzing and
comparing various methods, rather than as a system that chooses a learning method itself. Instead,

the experimenter chooses a learning module to run against a given problem-solving test suite.’

In cascade models, two or more learning strategies are cascaded sequentially, with the output
of one strategy serving as the input to another. For example, Danyluk’s (1991) GEMINI system
uses a cascade of explanation-based learning, conceptual clustering, and rule induction strategies,
in that order, to combine analytical and empirical learning into a single learning system. Clearly,
these categories of models are not exclusive of each other (e.g., a strategy selection system may

choose to cascade learning strategies in certain circumstances), but they serve to characterize the
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major ways in which learning strategies may be integrated.

Finaly, single mechanism models use a single underlying mechanism as a “weak method”
which can perform different types of learning depending on the situation. Examples of such
models are Laird, Rosenbloom and Newell’s (1986) SOAR, and Tecuci and Michalski’s (1991)
MTL. These approaches are sometimes contrasted with multistrategy approachesin that, although
they provide multiple methods for learning when characterized at atheoretical level, only asingle
learning algorithm is implemented in the computer model. As discussed earlier, however, it is till
important to characterize the learning strategies that are implemented by (or that emerge from) the
single mechanism, and the circumstances under which different strategies are used by the system,

even in such systems as those above.

Our approach is an example of a strategy selection model. To develop acomputer program that
can deal with the complexities of real-world troubleshooting, the system must deal with an incom-
plete world model, dynamic changes in the world which renders part of the world model obsolete,
and multiple forms of knowledge (much of it shallow). This requires the integration of multiple
learning methods (inductive, analytical, and interactive) in both supervised and unsupervised situ-
ations. Our experience with the Meta-TS system shows that a strategy selection architecture can
dedl effectively with such problems. Furthermore, our approach provides a general framework for
integrating multiple learning methods. The learning strategies are not dependent on the domain,

but are, however, dependent on the types of knowledge used in the performance task.

5.2 Psychology, metacognition and human learning

Much of the metaknowledge research in artificia intelligence has focused on knowledge about
knowledge, or knowledge about the facts that one does or does not know (e.g., Barr, 1979; Davis,
1979; Davis & Buchanan, 1977). Much of the metacognition research in psychology has also
focused on similar issues, in particular, on cognitive processes, strategies, and knowledge having
theself asreferent. Of particular interest is psychological research on metamemory which includes,
in addition to knowledge about knowledge, knowledge about memory in genera and about the
peculiarities of one’'s own memory abilities (Weinert, 1987). The empirical results obtained from

the Meta-TS system support the claim that metaknowledge should also include knowledge about
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reasoning and learning strategies.

Experimental results in the metacognition literature suggest that introspective reasoning can
facilitate reasoning and learning. For example, Delclos and Harrington (1991) report that subject
conditions with general problem-solving skill training and those with both problem-solving and
metacognitiveskill training demonstrate equal performanceonalogical problem-solving task. With
greater task complexity, however, subjects with the problem-solving and metacognitive training
exhibit greater performance than either a control group or the group with problem-solving training
alone. Swanson (1990) establishes the independence of general problem aptitude from metacogni-
tive ability. Subjectswith relatively high metacognitive ability, but low aptitude, often compensate
for low aptitude by using metacognitive skills so that their performance is equivalent to subjects
with higher aptitude. Our research extends these results by specifying computational mechanisms

for metacognitive processing, focusing in particular on the selection and use of learning strategies.

There are at least three important ways that metacognitive knowledge and capabilities bear on
work in introspective learning. First, and foremost, is the emphasis on cognitive self-monitoring.
This behavior is a human’'s ability to read their own mental states during cognitive processing
(Flavell & Wellman, 1977; Nelson & Narens, 1990; Wellman, 1983). Thus, there is a moment-
by-moment understanding of the content of one’s own mind, and an interna feedback for the
cognition being performed and a judgement of progress (or lack thereof). Psychological studies
have confirmed a positive effect between metamemory and memory performance in cognitive
monitoring situations (Schneider, 1985; Wellman, 1983). This directly supportsthe hypothesisthat
there must be areview phase when reasoning or a parallel review process that introspects to some

degree about the performance element in a cognitive system.

Second, our Meta-XP theory places a heavy emphasis on explicit representation. Trains
of thought, as well as the products of thought, are represented as metaknowledge structures,
and computation is not smply calculated results from implicit side-effects of processing. This
emphasis echoes Chi’s (1987) argument that to understand knowledge organization and to examine
research issues there must be some representational framework. Although diverging from the
framework suggested by Chi, Meta-XP theory provides a robust form to represent knowledge
about knowledge and process. For example, Meta-XPs can represent the difference between

remembering and forgetting (Cox, 1994; Cox & Ram, 1992). Since forgetting is the absence of
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asuccessful retrieva (i.e., amenta event which did not occur), forgetting is difficult to represent
in most frameworks. An explicit representation of it, however, has been formulated in the Meta-
AQUA system mentioned earlier, and used to reorganize memory indexes when forgetting occurs.
Moreover, forgetting is an important issue in additional machine learning (Markovitch & Scott,
1988) and cognitive psychology (Mensink & Raaijmakers, 1988; Wellman & Johnson, 1979)
research. Meta-TS implements asimple form of forgetting in which obsolete knowledge is del eted

onceitisidentified.

Finally, because the approach taken by theintrospectivelearning paradigm clearly addressesthe
issue of memory organization, it can assign blameto errorsthat occur from mis-indexed knowledge
structures and poorly organized memory. Although Meta-TS does not need to deal directly withthe
mis-indexed knowledge problem,® extensions of this approach to other types of tasks and domains
may need to do so, particularly if deep knowledgeisrequired. Memory organization of suspended
goal s, background knowledge, and reasoning strategiesisasimportant in determining the cause of a
reasoning failureas arethe goals, propositionsand strategies themsel ves (Ram, Cox, & Narayanan,
in press). Thus, memory retrieval and encoding issues are relevant in deciding what to learn and
which learning strategy is appropriate. This claim is supported by the metamemory community’s
focus on organizational features of memory and their relation to the human ability to know what
they know, even in the face of an unsuccessful memory retrieval. Extending the Meta-TS model
to include a cognitive model of human memory (including memory organization) is an important

issue for future research.

One of the mgjor differences between the manner in which humans learn and that in which
machinesdo isthat humans perform dynamic metacognitivemonitoring or self-evaluation. Humans
often know when they are making progressin problem solving, even if they are far from a solution,
and they know when they have sufficiently learned something with respect to some goal (Weinert,
1987). They know how to alocate mental resources and can judge when learning is over. Many of
the abovereviews (e.g., Chi, 1987; Schneider, 1985; Wellman, 1983) cite evidencefor such claims.
Research in Meta-XP theory is a step in the direction in adding this metacognitive monitoring
capability to Al systems, but this is beyond the capabilities of the present implementation of
Meta-TS.

It should be noted that the learning strategies represented in Meta-TS, or other strategy se-
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lection programs such as MetaeAQUA, are at afiner level of granularity than those examined by
much of psychology. For example, it would be misleading to assert that the types of learning
strategies studied by the metacognition community are similar to index learning, explanation-based
generdization, and other learning strategies used in MetaAQUA, athough Meta-TS's strategies
are closer in content to the cognitively plausible learning methods suggested by Anderson (1989)
and others. Instead, metacognition research focuses on a person’s choice of strategic behaviors at
thelevel of cue elaboration, category grouping, and target rehearsal (in memory tasks); re-reading
of text, question generation, and keyword search (in text interpretation tasks); or solution check-
ing, saving intermediate results in an externa representation, and comprehension monitoring (in
problem-solving tasks). However, many of the results from research on metacognition do support
the overall approach taken in this paper, that of using introspection to support the selection of
appropriate strategiesin different situations. Although we are currently building computer systems
at what might be called the micro-level, it would be eventually be desirable to build systems that

integrate the kinds of behavior exhibited by human learners at the macro-level aswell.

Finally, we would like to emphasize that our model of learning is agnostic about the issue of
“consciousness” Weinert (1987) argues convincingly that consciousness is a persistent unsolved
problem in metacognition. However, we make no claims about when people are aware of their
introspection, nor that active, strategic learning necessarily impliesa conscious process. We would
expect some of the processing in our model to be deliberative and conscious, especialy when the
reasoning system becomes aware of afailurein its reasoning process, but it is evident that people
possess and use metacognitive knowledge that they are sometimes not aware of. This issue is
beyond the scope of and orthogonal to the point of this article; the computational model presented
here may be used to take an intentional stance (Dennett, 1987) towardsthe learning processinwhich
the competence of the learner is modeled using goals, learning decisions, learning actions, and so
forth as the basic theoretical constructs, independent of the degree of conscious self-awareness of

these processes in human thought.
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6 Pragmatic implicationsof the model for education

While Meta-TS isintended as amodel of learning, our results have several pragmatic implications
for the design of interactive learning environments. Major issues in developing an intelligent
tutoring system include what to teach and how to teach; specific points of importance are the
student model, the teacher model, the organization of knowledge, the smulation of the task, and
the interface to the learner (Psotka, Massey, & Mutter, 1988; Spohrer & Kleiman, 1992). Our
research suggests that it would be valuable to teach shallow troubleshooting knowledge, including
context-specific associative knowledge and general heuristic knowledge. Furthermore, since our
model of learning involvesreasoning about actual troubleshooting experiences, and active pursuit of
identified learning goal sthrough multiplelearning strategies, we suggest that novicetroubl eshooters
be placed in simulated or actual problem-solving situations and encouraged to reason about what
they are doing and why they are doing it. This approach is consistent with recent approaches
suggested in the educational literature. For example, in Scardamaliaand Bereiter’s (1991) Teacher
C model, the teacher is concerned with helping students formulate their own goals, do their own
activation of prior knowledge, ask their own questions, direct their own inquiry, and do their
own monitoring of comprehension. Redmond (1992) suggests a similar approach to learning
through apprenticeship. His model is implemented in the CELIA system, which observes an
expert troubleshooter (in this case, a car mechanic) solving the given problem, reasons explicitly
about how it would solve the same problem, and determines what it needs to learn in order to
be able to explain and predict the expert’s behavior based on the differences between the expert’'s

problem-solving processes and its own.

Several researchers have proposed simulation environments in which students play roles that
are connected to their goals, and whose successful completion requires acquisition of the skillsto
be taught (e.g., Schank et al., 1994; Shute, Glaser, & Raghavan, 1988; van Berkum et al., 1991).
Van Berkum and his colleagues, for example, identify four aspects of the design of such systems:
simulation models, learning goals, learning processes, and learning activity. In their model,
students pursue learning goals with three dimensions. the type of knowledge, the representation
of that knowledge, and the generality and applicability of that knowledge. Learning occurs

through interaction with ssimulated environments using four types of learning actions (orientation,
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hypothesisgeneration, testing, and eval uation) which are guided by thelearning goals. Thelearning
model implemented in Meta-TS provides a basis for the design of such learning environments. In
particular, we suggest that these environments provide facilitiesto encourage students to introspect,
guestion, and explore. Exploring the relationship between learning and education is a fruitful

direction for future research.

7 Conclusions

We have presented a computational framework for introspective multistrategy learning, whichisa
deliberative or strategic learning process in which areasoner introspects about its own performance
to decide what to learn and how to learn it. The reasoner introspects about its own performance
on areasoning task, assigns credit or blame for its performance, identifies what it needs to learn to
improveits performance, formulateslearning goals to acquire the required knowledge, and pursues
its learning goals using multiple learning strategies. In this article, we have presented a model of
human troubl eshooting based on thisframework, focusing in particular on thelearning aspectsof the
model. Themodel isimplementedin acomputer programwhich model shuman troubleshootersand
also providesacase study in the use of the computational framework for the design of multistrategy
machine learning systems. Our approach relies on a declarative representation of meta-models
for reasoning and learning. The resulting computational model represents a novel combination of
metacognition and multistrategy learning and provides aframework for cognitive modeling aswell

asthe design of artificial intelligence systems.

In this article, we have presented a particular case study of an introspective multistrategy
learning system for the complex task of diagnostic problem-solving on the assembly line of
a real-world manufacturing plant. The research was based on observations of troubleshooting
operators and protocol analysis of the data gathered in the test area of an operational electronics
manufacturing plant. The model was implemented in a computer system, Meta-TS, which uses
multipletypes of knowledgeto troubleshoot printed-circuit boardsthat fail inthetest area. Meta-TS
was evaluated on a series of troubleshooting problems, including actual problems encountered by
the human operatorsin the manufacturing plant. The results were evaluated both qualitatively and

guantitatively to determine the efficacy of the learning methods as well as to compare the model
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to human data. The results show that the model can be computationaly justified as a uniform,
extensible framework for multistrategy learning, and cognitively justified as a plausible model of

human learning.
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Figure 1. A schematic of the NCR el ectronics manufacturing plant.
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“R24 has areading dightly lower than nominal. Therefore, the operator suspects that a bad 1C
connected to it is loading it down. After checking the schematics, he sees that u65 is connected
toit. Thisisaknown bad part. He lifts the leg connected to it and ohms out the resistor. The
resistor now measures 10K, so he knows that u65 is the culprit. He replaces the I C (and attributes

the problem to the vendor).”

Figure 2: Sample troubleshooting protocol from Cohen (1990, p. 206).
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Figure 3: The problem-solving module for the troubleshooting task.
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Tr oubl eshoot i ng board #6

ICT ticket information

These are board faults
TA 7052 MAX Processor

r243 has fail ed
Measured = 18. 000000 ohns
Nom nal = 10. 000000 ohns

Ent eri ng probl em sol ver

Getting synmptominformation fromticket
r243 has failed

Looki ng for associations for r243
No associ ations found

Associ ation search unsuccessfu
Di agnosi ng by heuristics

Looki ng for heuristics

Appl yi ng heuristic-3
Measured val ue is much higher than nom nal val ue
Suspecting an open/defective part

Chmi ng out on r243
Ti cket reading verified

Perform ng visual inspection
Def ective part verified

Di agnosi s: Defective part, r243 is defective
Repair action: Replace r243

Figure 4: An example of a problem-solving episode.
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Tests on World P

(Decide whether to learn)
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Trace +
Learning Goal

Credit
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Verified
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Ch t
Select Perform Method an‘:v?:jgg
Learning ) Action (Either S
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Strategy perform learning step )

1

intermediate status information

Figure5: Architecture of the multistrategy learning module.
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/'] Definition of class Introspector

class In

trospector{

private:

int tabl eStrategi esCondition[

int gACoal ;

publi c:
Intr
Trac
voi d
voi d
voi d
voi d

voi d

voi d
voi d
voi d
voi d
int
int
int
int
voi d
int
voi d
voi d
voi d
voi d
voi d

voi d
voi d

~——
————

ospect or(void);
eCol | ection traces;
fill Tabl e(void);
execut eAppropri ateStrate
strat egyUnH(voi d);
strat egySH(voi d);

strat egySHP(voi d);

strat egyDel S(voi d);
strat egyDel Un(char* inpu

\\\—r\\\\\\\\\\@ ~—
i ¢ B i e

| ear ni ngMet hod( voi d);
reinitializeTabl e(v0| d);

sol ution(void);

heuri stics(void);

associ ati ons(void);

expert | nput (void);
set QAGoal (int val)

get QAGoal (voi d)

preQA(char* inString);
gA(voi d);

~ e e e e e —
~ e e e e e —

appendTrace (void); /1
di spl ayTrace (voi d)

di spl ayTrace (char* input);

removeTrace (void);
removeTrace (char* input)

MAX_PARAMETERS] ;

Solution (1 - correct, O - incorrect or no solution)
Heuristics (1 - yes, 0- no)

Associations (1 - yes, 0 - no)

Expertinput (1 - yes, 0 - no)

Trueif learning goal requires question-answer session

Default constructor
Collection of traces for postponement
M ethod tofill the tableStrategiesCondition

(void

Method to execute appropriate strategy based on table

Strategy for completely unsupervisedlearning
when heuristics used for problem solving

Strategy for both supervised and unsupervised learning
when heuristics used for problem solving

strategy for both supervised and unsupervisedlearning
when heuristics used for problem solving
and learning goal needsto be suspended

Strategy to delete obsol ete associative knowledge
through supervisory input

~
=

Srategy to delete obsolete associative knowledge
through unsupervised reasoning
The learning control method

Reinitializes tableStrategiesCond

Determinesif solution is correct by performing tests on
the world and comparing reasoning trace

Determinesif reasoning processinvolved heuristic knowledge
by searching through reasoning trace

Determinesif reasoning trace involved associated knowledge
by searching through reasoning trace

Determinesif expertinput is available
by interacting with user

Creates learning goal for question-answer session

Returns|earning goal for question-answer session

Pre questio-answer steps

Asks question and gets answer

Utility methods

Bool ean i nput TrackTrace(char* i nput);

Figure 6: Implementation of introspector as a classin C++.
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Tr oubl eshooti ng board #13

ICT ticket information
These are board faults
TA 7052 MAX Processor
r22 has failed
Measured = 16. 000000 ohns
Nom nal = 20. 000000 ohns

Ent eri ng probl em sol ver

Step #1
CONTROL METHOD: get synptominformation fromticket
PRECONDI TI ONS: t1cket avail abl e
MET BY: input
RESULT: r22 has failed

Step #2
CONTROL METHOD: find associations for r22
PRECONDI Tl ONS: synpt om avai | abl e
MET BY: r22 has failed
RESULT: no associ ations for r22

Step #3
CONTROL METHOD: find heuristics
PRECONDI TI ONS: s%/npt om avai |l abl e AND no associ ati ons
MET BY: r22 has falled AND no associations for r22
RESULT: heuristic-1 found

Step #4
HEURI STI C. apply heuristic-1
PRECONDI TI ONS: neasured value is slightly |lower than nom nal val ue
MET BY: ticket information
RESULT: ohm ng-out recommended

Step #5
ACTI ON:  ohmi ng-out on r22
PRECONDI Tl ONS: synpt om avai |l abl e AND acti on recomended
MET BY: r22 has falled and ohmi ng-out recomended
RESULT: bogus ict ticket

Di agnosi s: bogus ict ticket
Ent ering | earner

Anal yzing Trace Meta- XP steps 1-5
SYMPTOM r22 has failed
DI AGNOSI S: bogus ict ticket
OQUTCOME: di agnosi s correct
Usi ng I ntrospective Meta-XP
GOAL: |earn association for r22
STRATEGY: unsupervi sed | earning of associations

I nvoki ng | earning strategy
Creating new association for r22

Met a- TS now has associ ati ons for
r243, u37, r254, r200, r121, u73, r22

Figure 7: An example of the strategy of unsupervised learning of associationsin Meta-TS. Here,
Meta-TS has just |earned the association that r22 failures often indicate a “bogus’ ticket reading.
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Tr oubl eshoot i ng board #2

ICT ticket information
These are board faults
TA 7052 MAX Processor
r24 has failed
Measured = 21.200001 ohns
Nom nal = 10. 000000 ohns

Ent eri ng probl em sol ver

Step #1
CONTROL METHOD: get synptominformation fromticket
PRECONDI TI ONS: t1cket avail abl e
MET BY: input
RESULT: r24 has failed

Step #2
CONTROL METHOD: find associations for r24
PRECONDI Tl ONS: synpt om avai | abl e
MET BY: r24 has falled
RESULT: no associations for r24

Step #3
CONTROL METHOD: find heuristics
PRECONDI TI ONS: s%/rrpt om avai |l abl e AND no associ ati ons
MET BY: r24 has falled AND no associations for r24
RESULT: heuristic-3 found

Step #4
HEURI STI C. apply heuristic-3
PRECONDI TI ONS: neasured val ue is nuch higher than nomi nal val ue
MET BY: ticket information
RESULT: ohmi ng-out and visual -i nspection recommended

Step #5
ACTI ON:  ohni ng-out on r24
PRECONDI TI ONS: synpt om avai |l abl e AND acti on recomended
MET BY: r24 has falled and ohm ng-out recomended
RESULT: ticket reading verified

Step #6
ACTI ON: vi sual -i nspection on r24
PRECONDI Tl ONS: s%/rrpt om avai |l abl e AND acti on reconmmrended
MET BY: r24 has falled and visual -i nspecti on recomrended
RESULT: r24 is m ssing

Di agnosis: missing part, r24 is mssing
Entering | earner

Anal yzing Trace Meta- XP steps 1-6
SYMPTOM r24 has failed
DI AGNOSI S: missing part, r24 is mssing
OQUTCOME: di agnosis I ncorrect, u37 is defective
Usi ng I ntrospective Meta-XP
GOAL: |earn association for u37
STRATEGY: supervised | earning of associations

I nvoki ng | earning strategy

I's expert input available for this episode? >>yes
Enter |eft-hand-side of association: >>u37
Sel ect right-hand-si de of association:
a. Bogus ICT ticket
b. Repl ace defective part
c. Performvisual inspection followed by diagnosis
d. Performlifted | eg procedure foll owed by diagnosis
>>C
Creating new association for u37

Met a- TS now has associ ati ons for
r243, u37

Figure 8: An example of the strategy of supervised learning of associations in Meta-TS. Italics
indicate user input during this episode.
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Figure 10: Ratio of learning conditions to hand-coded condition in terms of diagnostic accuracy
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Tables

Table 1. Algorithm for introspective multistrategy learning in Meta-TS. Note that step 2E is not
necessarily performed immediately after 2D; in some cases, it may be performed at alater time (for
example, as in the case of the postponement strategy in which learning is deferred until a suitable

opportunity arises).

Step 0: Perform troubleshooting and record in Trace Meta-XP, including reasoning steps and

knowledge (associations or heuristics) used in each step.

Step 1: Analyze Trace Meta-XP to identify reasoning failures, including incorrect diagnosis,

inability to create adiagnosis, and correct diagnosis but through inefficient problem-solving.
Step 2: If analysisrevedsareasoning failure, then learn:

Step 2A: Characterize type of reasoning failure
Step 2B: Use Introspective Meta- X Ps encoded in introspector to determine cause of failure
Step 2C: Use anaysis of type and cause of failureto determine what to learn

Step 2D: Choose appropriate learning algorithm

Step 2E: Apply learning algorithm
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Table 2: Examples of associative and heuristic knowledge used in the problem-solving module.
r# indicates the number of aresistor component, and u# indicates the number of an IC (integrated
circuit) component.

Associative knowledge
e 1254 is often damaged. Visually inspect the part. If it is damaged, replace the part.

e If rlorr2fails, theticket reading is“bogus”* Output the diagnosis “Bogus ICT ticket.”

e U56 and u65 are known bad parts. Use the “lifted leg” procedure’ to identify the bad part(s) and
replace them.

e 1228, r239 and r279 are connected to us1. If one of these has failed with alow reading, u51 should
be replaced.

Heuristic knowledge

e If the measured reading of a resistor is slightly higher than the nominal value on the ICT ticket,
perform the “visual inspection” procedure. If the defect is found, terminate the search, otherwise
output the diagnosis “Unable to make an inference” and perform appropriate repair action.

o |f themeasured reading of theresistor isslightly lower (qualitatively) than the nominal value, perform
the “ohming out” action.c If the diagnosisis “Bogus ICT ticket”, terminate the search, otherwise
perform the “check schematics’action? and make an ordered list of faulty ICs. If any of these can
be fixed by association-based search, terminate search, otherwise test each of these ICs to determine
the faulty component. If a defective component is not found, terminate the search and output the
diagnosis“Unable to make an inference”

2A “bogus’ ICT ticket reading istypically caused when there is a poor connection between the board and the tester.

®During the“lifted leg” procedure the operator uses adental tool to tug at each leg on acomponent to find legswhich
have not been soldered to the pad.

¢*Ohming out” refers to using a multimeter to check the resistance of a connection on the board. This procedure
involves touching the two probes on the multimeter to each end of the connection.

4*Check schematics’ refers to the procedure followed by an operator to find the list of parts connected to aparticular
component (using the schematic page number for parts provided by the ICT ticket).
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Table 3. Examples of troubleshooting actions, control methods, and repair actionsin the problem-
solving module.

Troubleshooting actions
Perform visual inspection.

Check for faulty I1C that lowers resistance.

Ohm out on aresistor.

Check schematics.

Control methods

e Look at the symptom information on the ICT ticket first.

e Determineif there is an association for that symptom in memory; if so, invoke it and terminate the

search.

e Perform the “visual inspection” action. If the defect isfound, suggest appropriate repair action and

terminate search. Use the appropriate heuristics and determine the repair action depending on the
gualitative difference between the measured and nominal reading in the ticket.

Repair actions
o |dentify the part number of the defective part and replace it with an equivalent part.

e Output “Bogus ICT ticket reading” to indicate a suspected false ICT ticket reading.
o |dentify the part number of the missing part and install an appropriate part.

e Output “Unableto makeaninference’ to indicate insufficient knowledgeto arrive at an inference that
indicates arepair action.
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